Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
3 Biotech ; 14(5): 126, 2024 May.
Article in English | MEDLINE | ID: mdl-38585411

ABSTRACT

Genus Mucuna encompasses several plant species renowned for their utilization in traditional Ayurvedic medicine for the treatment of Parkinson's disease, chiefly due to their exceptionally high L-dopa content relative to other plants. However, limited information exists regarding Mucuna laticifera, a newly identified species within the Mucuna genus. This study unveils a remarkable L-dopa content of 174.3 mg/g in M. laticifera seeds, surpassing all previously documented Mucuna species. Moreover, this research marks the first documentation of L-dopa, flavonoids, and phenolics within M. laticifera seeds. Furthermore, the aqueous extract derived from these seeds exhibits robust antioxidant properties. Investigation into its anti-inflammatory potential reveals a significant reduction in paw swelling and neutrophil infiltration at inflammatory sites in a carrageenan-induced rat model. Gene expression analysis utilizing a rat paw model demonstrates that the seed extract significantly downregulates the expression of various inflammation-related genes compared to carrageenan-treated rats. Collectively, these findings clearly substantiate the anti-inflammatory activity of M. laticifera seed extract. The exceptional L-dopa content combined with its anti-inflammatory properties position M. laticifera seeds as a promising therapeutic option for neurodegenerative diseases like Parkinson's, as well as various inflammatory conditions. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-024-03969-w.

2.
Langmuir ; 39(33): 11910-11924, 2023 08 22.
Article in English | MEDLINE | ID: mdl-37552874

ABSTRACT

Scientists have investigated the possibility of employing nanomaterials as drug carriers. These nanomaterials can preserve their content and transport it to the target region in the body. In this investigation, we proposed a simple method for developing distinctive, bioderived nanostructures with mesoporous carbon nanoparticles impregnated with tungsten oxide (WO3). Prior to characterizing and encapsulating WO3 with bioderived mesoporous carbon, the anticancer drug doxorubicin (DOX) was added to the nanoparticles and examined loading and release study. The approaches for both nanoparticle production and characterization are discussed in detail. Colloidal qualities of the nanomaterial can be effectively preserved while also allowing transdermal transportation of nanoparticles into the body by forming them into green, reusable, and porous nanostructures. Although the theories of nanoparticles and bioderived carbon each have been studied separately, the combination presents a new route to applications connected to nanomedicine. Furthermore, this sample was used to study exotic biomedical applications, such as antioxidant, antimicrobial, and anticancer activities. The W-3 sample had lower antioxidant activity (44.01%) than the C@W sample (56.34%), which was the most potent. A high DOX entrapment effectiveness of 97% was eventually achieved by the C@W sample, compared to a pure WO3 entrapment efficiency of 91%. It was observed that the Carbon/WO3 composite (C@W) sample showed more efficacy because the mesoporous carbon composition with WO3 increases the average surface area and surface-active locations.


Subject(s)
Nanocomposites , Nanoparticles , Neoplasms , Humans , Drug Carriers/chemistry , Carbon/chemistry , Doxorubicin/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Porosity
3.
Chem Biodivers ; 20(8): e202300332, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37461844

ABSTRACT

The present study shows the chemical profile, antimicrobial, antiproliferative, and apoptotic effects of Stemodia viscosa extracts. Thirteen bioactive compounds were identified in the 80 % ethanolic extract by GC/MS analysis. The acetone extract exhibited a higher content of flavonoids and phenols of 805.10 µg QE/mg DW and 89.31 µg GAE/mg DW extracts, respectively. Furthermore, the acetone extract possessed the highest antioxidant activity (IC50 =9.96 µg/mL). The 80 % ethanolic extract exhibited significant antimicrobial activity; the highest activity was observed against Staphylococcus aureus with a zone of inhibition of 25±0.51 mm, MIC value of 4 mg/mL, and MBC value of 8 mg/mL. The antiproliferative results revealed the presence of anticancer activity with an IC50 =91.562 and 74.362 µg/mL against the B16F10 skin and COLO205 colon cancer cells, respectively. The flow cytometric analysis shows that the plant extracts cause cancer cell death through the induction of apoptosis. Our findings confirmed that Stemodia viscosa is a potential source of biologically active compounds.


Subject(s)
Acetone , Anti-Infective Agents , Acetone/analysis , Anti-Infective Agents/chemistry , Plant Extracts/chemistry , Phytochemicals/pharmacology , Phytochemicals/chemistry , Gas Chromatography-Mass Spectrometry , Antioxidants/chemistry , Flavonoids/pharmacology
4.
Environ Pollut ; 327: 121583, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37028784

ABSTRACT

Emerging contaminants removals like dyes and heavy metals from the textile effluent have an immense challenge. The present study focuses on the biotransformation and detoxification of dyes and in situ textile effluent treatment by plants and microbes efficiently. A mixed consortium of perennial herbaceous plant Canna indica and fungi Saccharomyces cerevisiae showed decolorization of di-azo dye Congo red (CR, 100 mg/L) up to 97% within 72 h. Root tissues and Saccharomyces cerevisiae cells revealed induction of various dye-degrading oxidoreductase enzymes such as lignin peroxidase, laccase, veratryl alcohol oxidase and azo reductase during CR decolorization. Chlorophyll a, Chlorophyll b and carotenoid pigments were notably elevated in the leaves of a plant during the treatment. Phytotransformation of CR into its metabolic constituents was detected by using several analytical techniques, including FTIR, HPLC, and GC-MS and its non-toxic nature was confirmed by cyto-toxicological evaluation on Allium cepa and on freshwater bivalves. Mix consortium of plant Canna indica and fungi Saccharomyces cerevisiae efficiently treated textile wastewater (500 L) and reduced ADMI, COD, BOD, TSS and TDS (74, 68, 68, 78, and 66%) within 96 h. In situ textile wastewater treatment for in furrows constructed and planted with Canna indica, Saccharomyces cerevisiae and consortium-CS within 4 days reveals reduced ADMI, COD, BOD, TDS and TSS (74, 73, 75, 78, and 77%). Comprehensive observations recommend this is an intelligent tactic to exploit this consortium in the furrows for textile wastewater treatment.


Subject(s)
Coloring Agents , Saccharomyces cerevisiae , Biodegradation, Environmental , Chlorophyll A , Coloring Agents/metabolism , Laccase , Textiles , Azo Compounds/metabolism
5.
Int Dairy J ; 137: 105488, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36089931

ABSTRACT

The entry of SARS-CoV-2 into host cells may involve the spike protein cleavage by cathepsin L (CTSL). Certain food proteins such as lactoferrin (Lf) inhibit CTSL. The current study investigated the impact of hydrolysis (0-180 min) by proteinase K on electrophoretic pattern, secondary structure, cathepsin inhibitory and SARS-CoV-2 pseudovirus infectivity inhibitory of bovine Lf. Gel electrophoresis indicated that hydrolysis cut Lf molecules to half lobes (∼40 kDa) and produced peptides ≤18 kDa. Approximation of the secondary structural features through analysis of the second-derivative amide I band collected by infra-red spectroscopy suggested a correlative-causative relationship between cathepsin inhibition and the content of helix-unordered structures in Lf hydrolysate. The half maximal inhibitory concentration (IC50) of Lf hydrolysed for 90 min (H90) against CTSL was about 100 times smaller than that of the Lf hydrolysed for 0 min (H0). H90 had also double activity against SARS-CoV-2 pseudo-types infectivity compared with H0.

6.
Life Sci ; 301: 120637, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35568229

ABSTRACT

In preceding years, bioactive peptides (BAPs) have piqued escalating attention owing to their multitudinous biological features. To date, many potential BAPs exhibiting anti-cancer activities have been documented; yet, obstacles such as their safety profiles and consumer acceptance continue to exist. Moreover, BAPs have been discovered to facilitate the suppression of Coronavirus Disease 2019 (CoVID-19) and maybe ideal for treating the CoVID-19 infection, as stated by published experimental findings, but their widespread knowledge is scarce. Likewise, there is a cornucopia of BAPs possessing neuroprotective effects that mend neurodegenerative diseases (NDs) by regulating gut microbiota, but they remain a subject of research interest. Additionally, a plethora of researchers have attempted next-generation approaches based on BAPs, but they need scientific attention. The text format of this critical review is organized around an overview of BAPs' versatility and diverse bio functionalities with emphasis on recent developments and novelties. The review is alienated into independent sections, which are related to either BAPs based disease management strategies or next-generation BAPs based approaches. BAPs based anti-cancer, anti-CoVID-19, and neuroprotective strategies have been explored, which may offer insights that could help the researchers and industries to find an alternate regimen against the three aforementioned fatal diseases. To the best of our knowledge, this is the first review that has systematically discussed the next-generation approaches in BAP research. Furthermore, it can be concluded that the BAPs may be optimal for the management of cancer, CoVID-19, and NDs; nevertheless, experimental and preclinical studies are crucial to validate their therapeutic benefits.


Subject(s)
COVID-19 Drug Treatment , Gastrointestinal Microbiome , Biotechnology , Humans , Peptides/pharmacology , Peptides/therapeutic use
7.
Environ Geochem Health ; 43(8): 2913-2926, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33433782

ABSTRACT

The present study was aimed to investigate brilliant green (BG) dye sorption onto soybean straw biochar (SSB) prepared at 800 °C and further understanding the sorption mechanism. Sorption kinetic models such as pseudo-first and pseudo-second order were executed for demonstrating sorption mechanism between the dye and biochar. Results of kinetics study were fitted well to pseudo-second-order kinetic model (R2 0.997) indicating that the reaction followed chemisorption mechanism. Furthermore, the effect of various parameters like sorbent dose, dye concentration, incubation time, pH and temperature on dye sorption was also studied. The maximum dye removal percentage and sorption capacity for SSB (800 °C) within 60 min were found to be 99.73% and 73.50 mg g- 1, respectively, at pH 8 and 60 °C temperature, whereas adsorption isotherm studies showed a higher correlation coefficient values for Freundlich model (R2 0.990-0.996) followed by Langmuir model suggesting that sorption process was multilayer. The characterization of biomass and biochar was performed with the aid of analytical techniques like scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) theory, X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA). FTIR analysis showed active groups on biochar surface. BET study revealed higher surface area of biochar (194.7 m2/g) than the biomass (12.84 m2/g). Besides, phyto- and cytogenotoxic studies revealed significant decrease in the toxicity of dye containing water after treating with SSB. Therefore, this study has proved the sorption potential of soybean straw biochar for BG dye and could be further considered as sustainable cost-effective strategy for treating the textile dye-contaminated wastewater.


Subject(s)
Glycine max , Quaternary Ammonium Compounds/chemistry , Water Pollutants, Chemical , Adsorption , Charcoal , Hydrogen-Ion Concentration , Kinetics , Thermodynamics
8.
Org Biomol Chem ; 18(24): 4575-4582, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32319501

ABSTRACT

In the present work, novel one-pot multicomponent reactions of tosylates, aryl aldehydes and thiosemicarbazide are reported for the synthesis of hydrazinyl thiazoles, using Fe2O3 NPs derived from rusted iron as a catalyst. The Fe2O3 NPs were characterized using XRD, SEM, VSM, HR-TEM, EDX and FT-IR techniques. The structures of all of the synthesized hydrazinyl thiazole derivatives were confirmed by 1H NMR, 13C NMR, FT-IR and mass spectrometry. The magnetic Fe2O3 NPs were easily recovered from the reactions using an external magnet, and the catalytic activity of the recycled catalyst was examined over four cycles under optimized reaction conditions; it exhibited minimal loss of yield. To explore potential applications, the synthesized molecules were investigated for their antibacterial, antifungal and antioxidant activities, and they showed promising results. The results were further supported through molecular docking studies.

9.
J Am Coll Nutr ; 39(7): 601-618, 2020.
Article in English | MEDLINE | ID: mdl-31951787

ABSTRACT

Objective:Pancratium L. (Amaryllidaceae J.St. Hil.) is a monocot genus with bulbous habitat and about 20 species worldwide have significant medicinal properties. The present envision aims to investigate the potential ability of Pancratium species for acetylcholinesterase (AChE) inhibition as a remedy for Alzheimer disease (AD). Different Pancratium species were screened for the inhibition of AChE enzyme from various localities across India. Prominent species was further studied for anti-inflammatory, antioxidant, metal chelating and UHPLC-QTOF-MS analysis.Methods: Nine different species collected across India were examined for AChE inhibition and for binding affinity studies using Surface Plasmon Resonance (SPR). Highest inhibition species was subjected to Response Surface Methodology (RSM) to accomplish the effective conditions for maximum extraction of phytomolecules in accordance with the inhibition of the AChE. Further, extract under optimized conditions were used to study anti-inflammatory, antioxidant, metal chelating and UHPLC-QTOF-MS analysis for tentative identification of phytomolecules.Results: Amongst different species collected, P. parvum Dalzell exhibited maximum inhibition 93.30 ± 1.71% with promising IC50 20 ± 0.22 µg/ml value. In addition, binding affinity toward AChE and ß plaques using SPR technique showed a higher binding response toward the enzyme. RSM study resulted that water extracts at 50 °C and 5.46 hours heating executed maximum inhibition. Other studies showed prominent anti-inflammatory and metal chelating ability with low antioxidant property.Conclusion: By using UHPLC-QTOF-MS compounds were tentatively identified for the concerned activities mentioned above. This work reports for accounting the detailed study of P. parvum and which can be further entailed for the treatment of various neurological disorders.


Subject(s)
Alzheimer Disease , Amaryllidaceae , Plant Extracts , Acetylcholinesterase , Alzheimer Disease/drug therapy , Amaryllidaceae/chemistry , Antioxidants/pharmacology , Cholinesterase Inhibitors/pharmacology , Humans , Plant Extracts/pharmacology
10.
PLoS One ; 14(5): e0215291, 2019.
Article in English | MEDLINE | ID: mdl-31150404

ABSTRACT

Among neurodegenerative diseases, Alzheimer's disease (AD) is one of the most grievous disease. The oldest cholinergic hypothesis is used to elevate the level of cognitive impairment and acetylcholinesterase (AChE) comprises the major targeted enzyme in AD. Thus, acetylcholinesterase inhibitors (AChEI) constitutes the essential remedy for the treatment of AD. The study aims to evaluate the interactions between natural molecules and AChE by Surface Plasmon Resonance (SPR). The molecules like alkaloids, polyphenols and substrates of AChE have been considered for the study with a major emphasis on affinity and kinetics. To better understand the activity of small molecules, the investigation is supported by both experimental and theoretical approach such as fluorescence, Circular Dichroism (CD) and molecular docking studies. Amongst the screened ones tannic acid showed promising results compared with others. The methodology followed here have highlighted many molecules with a higher affinity towards AChE and these findings may take lead molecules generated in preclinical studies to treat neurodegenerative diseases. Additionally, we suggest a unique signature for the heterogeneous analyte model using competitive experiments for analyzing simultanous interactions of both the analytes.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/pharmacology , Tannins/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/enzymology , Cholinesterase Inhibitors/chemistry , Circular Dichroism , Drug Evaluation, Preclinical , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , Humans , Models, Molecular , Molecular Docking Simulation , Tannins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...